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1.

1. General Remarks.

During the Deriod November 1, 1981 to October 31, 1982, the

Principal Investigator, in cooperation with several research

assistants, carried out a program of mathematical research in

the general area of control theory of partial differential eoua-

tions. The program involved two distinct phases: an effort aimed

specifically at the development and improvement of control stro-

egies in connection with the wing flutter problem and a more

general program in the area of distributed parameter control prob-

lems of hyperbolic type.

This work resulted in two scientific papers which form the

greater part of this report.. The first of these, Some Remarks

on the Current Status of the Control Theory of Single Space Dim-

ension Hyperbolicr Systems" was presented at the NASA JPL Symposium

on Cbntrol and Stabilization of Large Space Structures, Pasadena,

CA, July, 3982. The second, "Admissible Input Elements for Systems

in Hilbert Space and a Carleson Measure Criterion", by L. F. Ho

and the Principal Investigator, is a paper which largely resulted

from Dr. Ho's thesis work, also supported by this grant, in part.

In addition to Dr. Ho, who is now with the University of Iowa,

the Principal Investigator was assisted by R.. G. Teglas, H. M.

Baron, and R.. Rebarber..
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2.

2.. Travel Sui.ported by the Grant.

Grant funds were used to support travel by the Principal

Investigator and one Research Assistant, H. M. Baron.

The Principal Investigator travelled to Pasadena, ftlifornia,

to attend and present a paper at the NASA Jet Propulsion Laboratory

Symposium on Control and Stabilization of Large Space Structures.

The paper presented concerned the current status of the control

theory of hyperbolic partial differential equations with particular

emphasis on observers and canonical structure.

The Principal Investigator also took part in the 30th Anmi-

vereary meeting of the Society for Industrial and Applied Mathe-

matics (SIAN) in Palo Alto, California, July, 1982. A paper out-

lining the treatment of control problems associated with infinite

dimensional linear systems by means of methods from the theory of

analytic functions was presented at this meeting by invitation of

the organizing committee.. Ms.. Baron also attended this meeting

and presented a paper on control canonical forms for systems gov-

erned by various types of partial differential equations.
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3.

3.. Technical Appendix.

This appendix consists of two papers whose preparation was

supported in part by the grant. These rapers are:

"Some Remarks on the Current Status of the Control Theory
of Single Space Dimension Hyperbolic Systems"

and

"Admissible Input Elements for Systems in Hilbert Space
and a Carleson Measure Criterion",

the latter paper being jointly authored by L. F. Ho and the

Principal Investigator.
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SOME REMARKS ON THE CURRENT STATUS OF THE CONTROL THEORY

OF SINGLE SPACE DIMENSION HYPERBOLIC SYSTEMS

D. L. Russell.

University of Wisconsin Mathematics Department

ABSTRACT

We review various aspects of the control theory of hyperbolic systems,

including controllability, stabilization, control canonical form theory, etc. To

allow a unified and not excessively technical treatment, we restrict attention

to the case of a single space variable; the multi-dimensional case is treated in

our more extensive review ( 36 ] . The paper concludes with a short discussion

of the newly developed procedure of canonical augmentation.

SOME ASPECTS OF THE CONTROL THEORY OF THE WAVE EQUATION

AND RELATED SYSTEMS

The systematic study of control systems governed by partial differential

equations, a special, but exceptionally important, subcategory of distributed

parameter systems began In the early 1960' s with the work of the Soviet

scientists A. G. Butkovskii [3 ] (4] ,Yu. V. Egorov [11] and others. These

works were primarily concerned with the extension of Pontyagin' s Maximum

Principle [26] to certain classes of processes which could not be satisfactorily

modelled by finite dimensional mathematical systems. Controllability questions

were raised but were usually subsidiary to questions of optimality. One of the

first systematic controllability studies. in connection with the heat equation,

was presented by Gall chuk in ( 14 ] . One of the most important of the early

American contributions to the subject was the 1963 thesis of Fattorini [ 13]

which also treated parabolic systems and was one of the first works to

recognize the strong relationship between distributed parameter control studies

Supported In part by the Air Force Office of Scientific Research under Grant
AFOSR 79-0018.
*Dept. of Mathematics, University of Wisconsin, Madison, WI 53706. Also
Associated with Mathematics Research Center, University of Wisconsin, Madison.



and classical results in analytic function theory.

The author' s own interest in distributed parameter control theory arose

out of consulting experience with Honeywell, Inc., and NASA, starting around

1965 or 1966. In developing the Saturn launch vehicle for the Apollo program.

NASA has encountered the problem of transverse vibrations of the booster

structure and interaction of those vibrations with liquid sloshing modes in the

immense Saturn fuel tanks. While the eventual treatment of that problem was

based on finite modal approximations, the problem stimulated a great deal of

research aimed at an understanding of the control of vibrations in various

distributed parameter settings.

First looking at this problem, under Honeywell-NASA auspices, we

thought of modelling the booster structure as an "Eulee' beam, the displacement

w (x, t), which we may take to be scalar here, satisfying82

p(x) (EI (x) a w
(1

along with appropriate boundary conditions Including the control Inputs, at the

longitudinal extremities x = 0, x = L. We got nowhere with our study of

this problem Initially because the equation (1.1) is not particularly well

understood from the mathematical standpoint. There seemed to be no "handles"

to grasp. It would not be until the 1969 thesis of Quinn [ 27] that we would

understand how this system works and that it is, in fact, controllable in a

rather strong sense.

We knew about the control theory of ordinary differential equations from

various papers and from notes and lectures which would later be incorporated

Into the 1967 treatise on control theory by Lee and Markus [20] . We also

knew that hyperbolic partial differential equations in two independent variables

reduce to ordinary differential equations satisfied along the characteristics. It

was natural, therefore, to look for hyperbolic models which might fit our purpose.

Such was provided by the Timoshenko beam equations

axax

which may be viewed as two coupled wave equations. By "wave equations"

here, we mean the equation

.....



Z~az a (~)e
r(x)- - -(s-) = 0. (1.4)

13t
All coefficient functions shown in (1. 2), (1. 3), (1.4) are positive on 0 x < L.

It may be verified that (1. 2), (1. 3) and (1.4) are hyperbolic in the sense

described in ( 8], ( 25 ] , e. g.. Since (1.4) is conceptually simpler, it was

studied first, with accompanying boundary conditions

z(0,t) = 0 (1.5)

= (t) u(t), (1.6)

the latter Incorporating the control force u (t).

While the practical goal in mind was appropriate form of stabilization,

we knew that in the case of finite dimensional systems

x = Ax + Bu

an affirmative resolution of the controllability problem, steering from a given

x(O) = x 0 to a given x(T) = xl0 implied the property of stabilization; hence

we felt Justified in first looking at the state to state controllability problem for

(1. 4), (1. 5), (1. 6). The "energy" form for (1. 4) is

e(z. ) =- fr(x)( (xt))2 +s(x)(- (x.t) )dx. (1.7)
20 a

Given initial and terminal states
Oz

Z(x, 0) = z 0 (x), 1Z (x, 0) = y0 (x) (1.8)

z(xT) = z (x). 21 (x.T) = y1 (x) (1.9)

of finite energy. i.e. e (zo. vo) < m, (zl, vl) <-, we asked if there

exists u C L[O,T] for which the solution of (1. 4), (1. 5), (1.6) correspond-

ing to the initial state (1.8) assumes the desired terminal state (1.9) at time

t = T . The answer, a qualified "yes", came from two different approaches to

the problem. The relationship between these two approaches has, over the

years, grown ever more fundamental and has led to a great many very interesting

developments. See [34] and (45] in particular.

The first method explored was, as we have already indicated, the method

of characteristics. If we let

c (x) = Jr7 f (x)1.10)
+and consider families X ,X_ of "characteristic" curves satisfying



dx + + c( ) = 0
dt- +cx = , -c(x) = 3,'1.1

respectively, and then set

+(x, t) az az
v~xt (x-t) c c(X) La(xz t

we see readily that on X+ = ((x +(t),t)1}, X- ((x -(t), t)}, respectively,

we have

d +x+t )= v +(x +(t),t) - v-(x+ (t), t)

d v (x- (),t) =c' (x -(t)) -v +(x -(t), t) - v (x-(t),t) (1.13)

t = t' >ZTr

t = T = ZTr

X=0

X-~ ~ 4 T)X(LT) 
11

no XXtT) 0)

OP t.()t

40 0

t 0 x =L t=0 x =L t=0 x= L

Fig. 1.1: The Method of Characteristics



Because these differential equations are satisfied on different families of

characteristics, the coupling between them is more complicated than for the

usual system of ordinary differential equations. Nevertheless there is a method

of successive approximations, described in ( 30], [36 ], which enables solution

of these equations in certain regions provided with appropriate boundary data.

Such a region is the roughly triangular domain a0 shown in Fig. 1. 1. bounded

by t = 0, x = 0 and the characteristic X+(L, 0), of the first family

described by (1. 11), passing through the point (L, 0). Together with the

boundary data provided by (1. 5) and (1. 8), it may be seen that the differential

equations (1.12), (1.13) determine v+ and v-, and hence z(x,t), through-

out the domain 0 " Similarly, these equations together with the data

provided by (1.5) and (1.9) determine z (x, t) in the domain a 1 bounded

by x = 0, t = T and the characteristic curve X (L,T), described by the

second equation in (1.U) and passing through the point (L, T). Thus the

Initial and terminal states, described by (1.8), (1.9), together with the

boundary condition (1.5) determine z(x,t) in both a0 and a l .

Whether a0 and &1 are disjoint, or have a region, no of over-

lap, depends on the time T allotted for control. The time required for the

curve X+(0, L) to pass from X= L to x = 0 is
L x

TI1 C(X) (1.14)

and this is also the time required for X(LT) to pass from x = 0 to x = L.

We summarize the control situation, depending on the relationship between T

and T1 .

Case T < ZT. Here &0 and &1 overlap and the determinations of

z (x, t) in the overlap region f 0 = & 0 U a, provided by (1.8) and (1. 9) need

not and, in general, will not agree. There can, in such cases of disagreement,

be no solution of (1. 4), equivalently (1.12), (1. 13), in the region

RT = {(xt)1 OxSx. L, OStST}. Thecontrolfunction u(t), shownin

(1. 6)," never enters the picture because it cannot affect the solution of (1. 4) In

A 0 or &1 if (1.8), (1. 9) are satisfied at t = 0, t = T, respectively.

Case T = 2T. Here the two "domains of determinacy", &0 and ais
just fall to overlap; their boundaries have exactly one point in common, t = Tit
x = 0. The initial and terminal conditions (. 8) and (1.9) determine z (x, t )
in a 0 and a 1 , respectively. Another process of integration of the coupled



differential equations (1. 1Z) and (1. 13) permits unique extension of z(x, t),

equivalently v+(x, t), v- (x, t), into the domain n . The control steering

(L 8) to (1. 9) is then uniquely determined from this extension and (1. 6).

The determinations of z(x, t) in A 0 and A1 may fail to match

smoothly at the point p : x = 0, t = T . This results in discontinuities of

v+ along X+(L, 0) and of v" along X-(L,T) in general..

Case T ' ZT. The only difference between this case and the case

T = ZTI  lies in the line segment f: x = 0, TI <t <T-TI. which replaces

the point p of the case T = ZT1 . Extension of z (xt) from a 0 U a 1
into nl cannot be carried out until the boundary condition (1. 5), which
yields tz/ft (O, t) = 0, is augmented by arbitrary data

9 z(Olt) = 0(t), (0, t) C i.(. s

Once this is done, extension of z (x, t) into f2 proceeds much as before.

( See [ 30], [ 36 ] for details of the extension process. ) The arbitrary

function (t) can be designed so as to eliminate discontinuities of the
solution along X+( L, 0) and X( L, T), to satisfy some criterion of
optimality (see [ 30] e. g. ) or to fulfill any other appropriate design objective.

If the partial differential equation (1. 4) is combined with boundary
conditions different from (. 5), (1. 6), but still admissible for (1. 4), the

cases T < ZTI, T > ZTI remain as above. The rather delicate situation
at T = ZTI depends on the specific form of the boundary conditions. For

example, the boundary conditions
z(0,t) = 0, z(L,t) = u(t)

lead, in case T = 2T , to a situation where the desired control is not unique;
it has the form

u(t) = u(t) + y(t)
where 'Z(t) is a non-zero control steering the zero initial state into the zero

final state and y is an arbitrary constant. By contrast, the boundary

conditions

8Z-5z (0 ) , 2 (1, t) = u (t) (1.16)
3x ax

lead, in case T = 2T, to a situation where the desired control u (t) does

not, in general, exist. (See [31] , [37] for more details.)

The analysis of more complicated systems of hyperbolic equations, such

• -,,* A. **.. . . .. ", . . . , .... ",...-.-. ... ,,..... • ..... ......... ,..•..-,,--,,-....



as the Tlmoshenko system (1.2), (1. 3), is in general rather compl

there are some special cases, including appropriate boundary condl

which the analysis is fairly simple. In [M] a discussion is giv

analysis of the free boundary case

atp (Ot) =0 1 (Ot) - (0,t) = 0,
ax 3
a* (L,t) ul(t ( Lt) 2 (L,t)= u.(t)ax- ax"

It may be shown that all cross-coupling is of low order and the pro]

essentially equivalent to two problems (1. 4) with boundary condit:

Two critical times are involved. With (cf. (1. 14))

c,(x) EI W 2 T f x
=I P 0
,c W) WT L dx

c 2 (x) = k(x) " T2 = fL ) '
2 P W 2 0 2z(x)

it may be shown that finite energy states are controllable if and or

T - 2 max(Ti, T 2 }

The essential details of the analysis are given In [ 30 ] and are q1

to what we have briefly outlined here for (1. 4), (1. 5), (1. 6) .

It is immediately clear that the method of characteristics is

adapted to controls u (t) acting at a point, as in (1. 6). This

because the control determination occurs at the very last stage of t

after the controlled solution has been computed. If the control

scalar, acts on the system through a "control distribution function

in (cf. (1.4))
r(x) a2z a 8z gx)ut)

r 2 -R ( s (x) = g (x) u (t),
at

homogeneous beundary conditions (cf. (1. 5). (1. 6))
azz(O,t) = O0 R -- (LIt) 0

applying at the boundaries, we face what appears at first glance tc

different situation than what obtains in (. 4), (1. 5). (. 6), for ev

equations corresponding to (1. 12), (1. 13) will involve the unknown

in this situation; one cannot proceed by filling out z (x, t) in si

domains as before; a completely different approach is required. ,

approach can be found In the study of moment problems - a techniq



by several authors (see [3], [ 12] , 15] , [14] , [23] ). The technique has

the advantage, from the point of view of approximation of being intimately

connected with the modal representation of the system based on the natural

modes of vibration, or eigenfunctions of the operator -r(x)l (8/ax)(s(x)(az/ax)).

It is known (see [1]0 [7]) that the operator

Lz= -r(x) "1 a (S W z (1. 23)

with boundary conditions conformable with (1. 22) has eigenvalues

k 1 2 2

where the ek are uniformly bounded and T is related to c(x) by (1.14).

The corresponding eigenfunctions, Vk(x), k = 1, 2,3, .0., form an ortho-

normal basis for L2 [ 0, L] (which consists of the same functions as
r

L2 [ 0, L] but has the inner productL

O, f r ()p(x)l*(x) dx). (1.25)

Every finite energy solution z(x,t) of (1. 21), (1.22), i.e. every solution

for which the integral (1.7) is bounded for all t, can be expanded in the form

i(xlt) = i z k(t) Pk (x)

k=I
where, if we as sume the control distribution function f (x) has the expres sion

gWgk Pk x )g(x)=

k=1

convergent in L2 [0 ,L] , the z M satisfyr k~t
SZk +XkZk gk u(t), k= 1,2,... . (1.26)

Letting

wk = X , k= l,2,3,"

and using the transformation

(:k)= (/i wk )1 (1. 27)

one arrives at the system

(4k) (')k 0.k C:) k gk/2/
= + u(t). (1. 28)

Sk/ 0 --w k *k (gk/Z



It may be seen that finite energy states are those for which

k=I
and this becomes, in terms of Tik' Ck "

= (I1k -+I Ck 12 ) < - . (1.29)

Integrating (L 28), we have, for T > 0,

Tlk(T) - e ikT 0) = - e i wk (T  u(t)dt
0

Ck - eT)e0) =-w-J e u(t)dt.

Assuming the controllabiliy condition

g 0, k=l,Z,,...

we see that the problem of steering between the given states at times 0 and T

reduces to the moment problem

f"e f(s)ds =-gk k = 1, 2, 3, .- (1.30)
0
f e0Tiks f(s)ds= 1k k = 1, 2, 3,..., (1.31)
f

where s =T-t , f (s) = u(T -s), and

Ck = Z(71 OT) - e T kO ) )"  3k = 2 (tk(T) - e ( 32)

are square summable.

To solve the moment problem we resort to the theory of nonharmonic

Fourier series as developed by Paley and Wiener (24], Levinson [21],

Schwartz [42] and many others. (An excellent expository treatment [49] by

R. Young has recently appeared.) The following is known; the three cases

being divided in a manner conformable with the three cases discussed earlier.
Case T <ZT1 . The functions e akt k = 1,2,3,..., are

linearly dependent in L[OT] in a rather strong sense. Any one of these

functions, indeed, any finite number of them, lie in the closed span of the

remaining functions (which, in fact, is equal to the whole space L2 [ 0, T ] ).

As a result the moment problem (1. 30), (1. 31) cannot, in general, be solved.



Suppose, e.g., all but finitely many of the a k, 9k' say k = K+l, K+Z,---,

were equal to zero, while some of the ak 'k' k = 1, 2, - • -, K, are non-zero

The linear dependence just referred to shows that such a problem can have no

solution; the equationsTis Teilkkf s0dT =e, ks

0 e f(s)ds f f(s)ds = 0, k > K
0 0

imply that the same equations must hold for k S K.
iWkS -4 WkS

Case T = T i. Here the functions e , e , k= 1, 2, 3,...

form a Riesz basis for L2[0, 0Ti] . Every function h e (0, T has the

unique convergent expansionh a) h e it~1 s "iWkS

h(s) = C hke -k + hke 1 (1.33)

k=l
and there are positive numbers c, C, such that

c'l hllzo, S +Ih 2k (1.34)
L101 2T] k-l L?-[ , T]

Further, there is a unique dual basis of biorthogonal elements Pk' P-k e

L2[ O. Tl 2 such that

f e pksp(s)ds = ,, 6k, ..
0 f , ±2.

(1. 35)
6ki 1 , k =

0, k f

which engenders expansions similar to (1. 33), the roles of c, C in the

inequalities parallelling (. 34) being reversed. The fotmal solution of (L. 30),

(1. 31) is then uniquely given by

f(s) .= 2 1 [a kpk(s) + 3kp kS)] (1. 36)

k= 1 gk
If we have

k li l g k . = O , (1 . 3 7 )
k

as would be the case, e. . ge L2 (O,L], then the conditions for

convergence of (1. 36) axe ore stringent than Just the square summability of

the a" given by (1. 32). We need
k O.= ai"k"12 + I' < 2 - •

k=r



As a consequence we can steer (1. 21) from any finite energy initial state to a

dense (in the energy norm) subspace of final states, or vice versa, but we

cannot steer between arbitrary finite energy states during [ 0, 2T1 ] if (1. 37) is

true. The case of boundary control (1. 6), already treated by the method of

characteristics, will be discussed more extensively below. In that case the

coefficients g,,in (1. 26) are bounded and bounded below. The result is,

in that situation, that we obtain the same result this way as by the method of

characteristics - given finite energy initial and terminal states, there is a

unique control u c L 2CO, 2 steering the one to the other.

Case T > ZT 1 . The main difference between this case and the preced-
iWkS c, 

i

Ing is that here the functions e , e , k = 1,2,3,..., forma

Riesz basis for a proper subspace, E, of L2[ 0, T ]. The biorthogonal

functions Pk P-k exist, but are unique only if we require that they lie in

E - or we impose some comparable condition. If we agree that k" P-k

belong to E, then any elements

Pk: Pk qk" P-k ' P-k +q - k

with qk" q k e E -L C LO[ 0, T] still form a biorthogonal set relative to the

0 ik The convergence properties of series Involving the

P-k are much the same as in the preceding case. As a result we have the

same control capability as in the case T = 2TI but controls are not unique.

Indeed, if " is a control steering between two given states, the family of

controls U +^, u e E1  all realize the same control objective. Again,

this non-uniqueness should be compared with the similar property observed for

T > 2T1 in applying the method of characteristics.

Using the theory of distributions and related material, boundary value

control situations such as (1. 6) can be included in the same framework as

(1. 26) but with g in a larger space than L2[ 0, L]; g should be a linear

functional (in general unbounded on L2[ 0. L] ) whose domain includes the

domain, A(L), of the self adjoint operator L, given by (1. 23), with the

given homogeneous boundary conditions. The g, are the values which g

assumes at the eigenfunctions pk c a (L) . A detailed study of these

"admissible input elements" is provided in [ 17]. In this way a unification

of the boundary and distributed control cases may be achieved. One consequence

of this is that the biorthogonal functions Pk, P-k which play such an

* , .-. . .. . . .. .~ . ... " 5. " "* . " " "" " .* • " %'" P' "
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important role in the method based on the moment problem (1. 30), (1. 31) can

actually be obtained through the more constructive method of characteristics as

controls steering from a zero initial state (say) to final states constructed

using a single elgenfunction rk of L.

We began our discussion here with the Euler beam equation (1.1). For

definiteness, let us add a distributed control term (scalar input) and specific

boundary conditions so that we have

Sw 82 (EI (k) a 2 wp(x)- +-~ (EIx) - ) = g(x) u(t) (1. 38)
at ex axy

82 w 83 w
2 (0t) =-a- (ot) = 0, (1.39)

ax

a ?W 83w .t) .=2 (L,t) = -i w (L,t) = 0 (1.40)
8x 8x 3

In 1969 7. P. Quinn, in his doctoral thesis [ 27], studied the controllability

properties of a class of systems including this one. Here the operator

1 a2  2 w

ax ex
on the domain In H4[ 0, L] consisting of functions obeying boundary

conditions conformable with (1. 39), (1. 40) has eigenfunctions Vk (x) forming

an orthonormal basis for L2 0, L] and the corresponding eigenvalues '-k

grow like k 4 as k -.0- Mp Wth . .k = we obtain a system similar

to (128), using a transformation like (I. 27) applied to the second order

differential equations resulting from the eigenfunction decomposition:

wk+ Xkwk = ku (t), k = 0, 1, 2, 3,

(a slight modification of (1. 27), (1. 28) is necessary for ko = 0; see [ 34]).

Again there results

ik. (iwk T1 kk

and the energy expression for (1. 38) is, equivalently,

fL a...) ,w2 a2 w2]
0  at ) + E k (=)ax ]0 ex

or



S [(i)z + )k(Wk)?
k=0

or

~Il + i~klz

k=0
all < * for "finite energy" states. i'ks .iks

Quinn was able to show in this case that the functions e e

k = 0,,2,3. - (for k = 0 replace e ,e by l,s) are

linearly Independent in L2 [O,T] for every T > 0 (this result by itself

had already been obtained much earlier by Ingham [ 18 ] who shows, in effect,

that these functions form a Riesz basis for a closed subspace of L2 [ 0,T] for

every T > 0 ) and, additionally, that there is a positive number, M(T),

such that If the (non-unique) biorthogonal functions Pk(s), P k(s) are

appropriately selected in L2 [ O,T], these functions are continuous and

satisfy the pointwise bounds

lpk(s)l M(T), IP k(s) I : M(T), s e [OT]. (1.42)

The fact that the e k, e form a Riesz basis for a closed subspace

of LO[OT], T > 0, implies that initial states and terminal states with

(in terms of 0. 40)) expansion coefficients Tk ,. and ' k 1 k, 1
can be steered, one to the other, during O, T] with u e L2 [ ,Tj ,

provided that
iz  2 1 I z ?- Ck1 )

* (I I +k 2 G0 ( "I+ .:

k=O 9k ik k=O 9k + k

The boundedness property (1. 42) shows we can also control states for which

~+ Ck =L .:-I) < a

k=0i I9k

k=0 ok
this being possible with a control function u (t) uniformly bounded and

continuous on [0,T].
We have noted in connection with the Timoshenko beam system (1. 2), (1. 13)

*, ,* , , ,- ,- . .O *- - -I - ..



(1. 17), (1. 18), that an adequate control theory, based on the method of character-
istics, exists when we have two separate control functions, ul(t) and u,(t ),

with which to control the lateral deflection and shear deformation separately.
An open question Is the adequacy of control using a single control input, so

that (1.17), (1. 18) becomes, e. g.,

ao(Lt) = au(t), 4(L,t) - 2X (L.t) = Ou(t)ax ax

with a 2 + 13 A 0. This problem is a special case of the more general

question of the controllability of linear hyperbolic systems of dimension n = 2m,
involving m pairs of characteristics, each pair describing a given wave mode
propagating in two opposite directions, by means of fewer than m control

inputs. Some work has been done in this direction by R. G. Teglas in his

thesis ( 45 ] and by N. Wick ( 471 , but it is safe to say that no very general

criteria for this problem have yet appeared. Particularly valuable, it seems

to this author, would be a study of the Timoshenko beam system from the

singular perturbation standpoint, elucidating the behavior of solutions and

controllability properties as the modulus of elasticity in shear, k (x) in (1. 2),

(1.'3), tends to Infinity.

STABILIZATION, CANONICAL FORMS, EIGENLUE
PLACEMENT, etc.

As all practicing engineers will know, controllability in itself is rarely

the prime goal of control system design. Stability, and related criteria such as

robustness, insensitivity to particular input frequency bands, etc., are more

commonly uppermost in mind. Additionally, there is the question of state

estimation from lower dimensional, noisy observations in order to implement

linear feedback control policies. These subjects have been pursued almost ad

nauseum for linear, finite dimensional systems. In the case of distributed
parameter systems, and hyperbolic systems in particular, the literature on this

subject remains rather sparse and spotty in its coverage.
As In the case of linear finite dimensional systems, stability and stabili-

zation studies for linear partial differential equations have tended to cluster
around two dominant approaches: the Liapounov approach, primarily carried out

in connection with systems involving some form of "conservation of energy" law,

and the spectral approach, determining if, or making certain that, the



eigenvalues of the system lie in an appropriate subset of the left half plane. The

spectral approach suffers from the disadvantages of greater intricacy of

computation and the need to show that the spectrum location does, in fact,

determine the asymptotic behavior of the system. The latter brings in questions

of completeness and linear independence of the eigenvectors of the system.

We will begin with a short discussion of what has been done with

* Llapounov methods. On the theoretical side one can start with a system

k = Cx, (2.1)
C generating a strongly continuous semigroup S(t) in the Hilbert space X

(we may have started with a control system x Ax + Bu, set u = Kx, then

C = A + BK). We set up a quadratic functional

V(x) = (x, Qx),
where Q is a bounded, positive, self adjoint operator on X with Q - q1
for some q > 0, to serve as a Ltapounov function. One may then show that
fnr t 2 > t I  and x (t) = S (t)x 0  a "solution" of (2. 1), that

(x(t 2 ), Qx(t 2 )) - (x (t), Qx(t))

= -ft 2 (x(s), Wx (s))ds
t 1

for some positive self adjoint operator W so that, in some sense which one

needs to make precise in Individual cases,

C *Q+QC+W = 0, (2.2)
the Ltapounov operator equation, is satisfied. An important result, due to

Datko [ 10], states that if

f (x(t), Qx(t))dt < - (2.3)

for every Initial state x 0 e X, then the semLgroup S (t) is exponentially

damped, i. e.
0 S (t) u  Me "-Y t  t a 0,

for positive numbers M, y . The condition (2.3) is satisfied if W a wI
for some w > 0 , as may easily be verified.

Consider the linear symmetric hyperbolic system in Ln[ 0, L] =

(L2[0, L] )n

W
E(x) LM - A(x)-j- +B(x)w+f(x,t) (2.4)

where E (x), A (x), B (x) are continuously differentiable mXm matrices

defined for x e [ 0, L, E (x) symmetric and positive definite, A (x)



*symmetric. The wave and Timoshenko equations can be written in this form.
The "energy" usually is expressed as

L
e(t) = (w(x,t), E (x)w(x, t))dx.

0
With appropriately "conservative" or "dissipative" boundary conditions at
x= 0, x= L, one finds that for t2 > t

t2 L •

+J (w(x, t), f(x,t))dx}dt
0

If B (x) + B (x) - A (x) is uniformly negative definite or if the n dimensional
control function f (x, t ) may be arbitrarily specified as a function of x and
t. one may use feedback

f(xt) = K(x)w(x,t) (2.5)
in such a way that 2L

e(t.) - e(tl ) = -f f (w(x,t), W(x)w(x, t))dxdt (2.6)
ti 0

with W(x) uniformly positive definite and symmetric on [ 0, L]. Then one
can apply Datko's result, or more simple arguments, to show that solutions of
(2. 3), (2. 4) are uniformly exponentially damped in L 2 ( 0, L] norm.

Note, however, that If B (x) + B (x)* - A (x) = 0 or for some other
reason fails to be positive definite, and If

f(x, t) = D(x)u(x,t) or f(xt) = D(x)u(t)
with dim u (x, t) = r < R in the first instance, u a function of t only in
the second instance, then we cannot, in general, achieve (2. 5) with W(x)
uniformly positive definite. Comparable difficulties arise when boundary
control is employed. In such cases it is a form of the La Salle "invariance
principle" (see, e. g. ( 19]) which must be appealed to, rather than the basic
Liapounov theory, for an analysis of presumed asymptotic stability properties of
the system. This has been discussed in some detail in (36] and (33] and
we give only the briefest outline here.

The "Invariance principle", as it applies to finite dimensional systems,

relies heavily on the compactness of the "u-limit set" of the system in order to
reach the final conclusion of asymptotic stability. Comparable compactness
properties associated with the solutions of an infinite dimensional system are

$1



generally difficult to realize but the initial attempts to extend the theory nonethe-
less relied on establishing some sort of compactness property. One of the first
contributions in this direction was due to Dafermos [ 9 1 who studied weak
damping of the wave equation, relying on the almost periodic nature of the

. system solutions to provide the required compactness. Slemrod [ 43 ] studied

the boundary damped wave equation by introducing suitably weakened topologies
- as compared with the usual topology associated with the energy norm - and

was able to conclude a correspondingly weakened form of asymptotic stability.

P %Knowing that controllability implies stabilizability n the case of autono-

mous finite dimensional linear systems, we are not surprised to find control-
lability playing a role in the study of asymptotic stability and stabilization
properties of autonomous infinite dimensional linear systems. This is discussed

in some detail in the paper [ 28] by J. P. Quinn and the author and also in
4, [33]. Systems of the form (2.3), but with the control appearing in the bound-

ary conditions, are studied in [28] prior to the main discussion on the boundary
damped, higher dimensional wave equation. We can give an Idea of the flavor

of the arguments employed using a simple example based on the wave equation

(. 4) with control appearing in the boundary conditions (1. 5), (1. 6). If in this
system one employs the feedback law

u(t) = -Y -2- (Lt), (2.7)

the closed loop system is (1.4), (1.5) together with the "closed-loop" Robin
type boundary condition

S ,t)+ (4t) = 0 (2.8)

Here a short computation shows that with the energy 8(t) defined by the

expression (1.7) we have, for t 2 > t P
e (t ) - e(t) = -VP (L) f taw )2

S t dt. (2.9)
It is not feasible to fit this situation into the general pattern based on the

Liapounov operator equation (2. 2) but, since we expect (correctly) that, along

with (1.4), (1.5), (2. 8)
8wat M 0t)ME 0 5b w (x, t) =_ 0

an "invariance principle" type of argument appears to be in order. But we
will use a variation on this procedure which makes use of the controllability
already established in Section 1. Let v (x, t) be a controlled solution oi

""-



(1.4), (1. 5), (1. 6), u (t) being selected so as to steer the initial state
avw

v(x, 0) = w(xO0), jt(x.o) = a- (X, 0 (2.10)
agreeing with the initial state of the solution w (x, t) of (1. 4), (1. 5), (2. 8),

to the zero final state

v(xT,) = 0, av(xT ) = 0(.1)

TI as described earlier. Defining the "energy inner product"
LI 8w (x 8 v 8w 8,v

(w(.,t),v(- ,t)) =f [p(x)-- (x,t )- (x.t) +p(x)2 (x, tv (x, t)] dx

it is found, using (1. 5), (2. 8), (2.10), (2. 11), that

(w(.0). v(.,0)) - (w(. .ET1). v(., 2 Iw(., 0)( Ie
r w 8v V w

-p(L)I [ 'w (( , t) '-( L, t) + - (L, t) 2-(L, t)] dt

2I  V(L' t)+v ( L .t)]dt

p(L, fO (L, t) [yg.- (L. t) + u(t)] dr.0

Here w( , 0)JJ , the energy norm at t = 0, is Ze (0). Applying the

Schwartz inequality
Z ~ZT I 'w (L, t)2 dt

4(0) p(L)t(2.12)

f I1 - (L,t) +u (t))2 dt.

A slightly more detailed study of the control problem for (1. 4), (1. 5), (1.6) in

the case T = ZT1  (or T > 2TI ) shows that control from an initial state

w(xO), F (x,O) to 0, 0 at time ZT1  is realized with a control u(t)

which satisfies Z 1  2
f u (t)2dt s K0 e(0)

and, for the resulting contr.olled solution we have

f 2T1a L, t) 2 dt S Kle(0)
0 a

for certain positive constants K0  and K1 . Then (2.12) easily yields

•(L, -e0) 2  = Ke(O)
0 a t 2 (KO +yP2 K1 )e(0)



and, setting t I = 0 , 2 = ZT1  in (2.9), we have

e e(zT) e (0) - K e(0) = (1-K) e (0) . (2.13)

Since e(ZT1 ) is, from (2.9), (2.13), positive and less than or equal to P(O)

we conclude 0< l-K<I.

Repeating the above argument on successive intervals [ 0, ZT1 ] , I ZTI,

4T] ... [2kT1, 2(k+)Tl] ,... and using the monotonicityof e(t), as

implied by (2.9), we conclude that e (t) decays exponentially to 0 as t -- a.

The same general argument can be used with a fairly wide class of boundary

damped linear symmetric hyperbolic systems (2. 4) and with many other systems

which are energy conserving in the uncontrolled situation and suitably strong

4. controllability properties. The Timoshenko system (1. 2), (1. 3), with appropriate

boundary conditions, is in this class. As far as the author is aware, the Euler

* beam model (1. 1) has not yet been studied from this point of view.

The spectral approach, as we have already indicated, involves a direct

* 4analysis of the elgenvalues and elgenfunctions or, more generally, the spectrum

w and invariant subspaces, of the generating operator C for a given system

x = Cx', possibly derived from a control system x = Ax + Bu by the use of

linear feedback u = Kx so that C = A + BK . A fairly common case, which

can be treated with minimal difficulty, arises when all but finitely many of the

elgenvalues of C have negative real parts. Under generically valid control-

lability-type conditions it is then possible to move the unstable eigenvalues

into the left half plane while either keeping the stable eigenvalues fixed or else

maintaining a certain margin of stability. Work of this sort has been carried out

byTriggiani [46] , Sakawa (40] , [41] and others.

A somewhat more challenging task arises when one starts with a system

having infinitely many elgenvalues in the closed right half plane (usually one

considers a conservative system wherein all of the eigenvalues of C are purely

imaginary) and one attempts to devise a feedback law to move all of these

I elgenvalues over into the open left half plane. A number of procedures have been

examined in this connection.
In [32] a second order system with scalar control

x +Ax = bu, x, b c X, (2.14)

is studied, X being a real Hilbert space and A an unbounded positive self

adjoint operator on X. Assuming that A has a Riesz basis of eigenvectors

Ok, k = 1, 2,3,..., in X, and corresponding positive eigenvalues 'k
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increasing with k, k = l, 2, 3,-.-, x and b may be expanded as

x xk, b= b bkOk" (2.15)

k=l k= 1

convergent in X, with square summable coefficients. We assume the

minimal condition for approximate controllability

bk 0 O, k = 1,2,3,--- .

The energy form is [(xx) + (x, Ax)] = e and elementary computations

show that for (2. 14) and for any T > 0
T.

e(T) - e(O)= f (x(t),b)u(t)dt. (2.16)
0

It follows that with

u(t) = -y(x(t),b) (2.17)
the energy e(t) is non-increasing with increasing t. So far this is

basically a Liapounov approach employing what is known in the engineering
literature as an ILAF (Identical Location of Accelerometer and Forces)

approach. The resulting closed loop system is, still in second order form,

x + + Ax = 0 (2.18)

with B defined by

B = y (, b) b. (2.19)

With y = x, one may consider the equivalent first order system in XX X,

) c(), (. B)(2. 20)

and ask: what are the eigenva ue's and eigenvectors of C? It is here that

one leaves the second method of Liapounov and returns to his first. In [ 32]

a perturbation analysis is carried out, valid for small values of y L (2.17),

(2.19). It is shown that, under the separation assumption

k+l - wk _: d > 0, wk = 4-Tk" (2.21)

the eigenvalues of C, which for y = 0 are ±iwk, k = 1, Z, 3,..., all

have negative real parts for y > 0 and, moreover, designating the perturbed

eigenvalues by k(y) k = _1, +2, ±3,.--, k = iwk, -k{0 ) = -iwk,

we have (cf. (2. 21))

~kY)iw~~ bkl2 2--1 k-r- (2.22)!
I wkI

-jZ
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L - 1 2 + 2 1
wk -2 k I WkI

It is also possible to show that the perturbed eigenvectors cont

- Riesz basis for the space X X X. From this it follows that

(2. 18) tend strongly to zero in the energy norm, though not at

ential rate.
Following Wonham, s initial results [ 48 ] on the finite c

there has been considerable interest displayed in the question
determination via linear feedback for distributed parameter sysi

of the system (2.14), equivalently,

1) b(x)= + ( (u

- .%. with initial (u 0) eigenvalues ± iwk, k = 1, 2, 3, • - ,
be phrased as follows: we suppose use of a linear feedback f

IU=(A2 X, kl) + (y, k2) , kl, k? E X,

bounded relative to the energy norm (x, Ax) + (y, y) = (A2 x,

XXX. With

KIx = (Ax, kl)b, KZy= (y, k?)b
the closed loop system is

One can now ask: What eigenvalues can be achieved for the
system (Z. 24) by appropriate selection of ki, k 2  in (2. Z!
time the author was under the impression that his approach via
[35] (more on this below) was the first treatment of this qi

fact, it appears that this credit must go to Prof. Sun S. -H. of

University who treated this problem by a more sophisticated al
perturbation technique used by the author in [ 3 2 ] to obtain t
Sun was able to show, with an assumption similar to (2. 21) a
basis assumption on the open loop eigenvectors, that the total
achievable by use of (2. 25) coincides with sequences k

1, 2, 3,--- for which, assuming the bk  0 as before,

F-.



S 2 - iW k  2 -k+iWk
I bk 1 +1 bk

k k

His very important paper has been translated by Ho L. -F. in [44]. Some
comparable, but necessarily weaker, results have been obtained by Reid in his I

thesis [ 29 ] for the equation of linear surface waves where (2. 21) is not

satisfied and, in fact, Other results in this
"m(k+l- wk) = 0* Ohreutiti

direction, for hyperbolic systems of various types, have been obtained by Clarki

[5], [6] and by Ho in his thesis [16].
Much of the initial impetus for the study of control canonical forms,

both for finite and infinite dimensional systems, came from the spectral

determination question discussed above, but the subject is interesting in its
own right and shows some promise of being adaptable for "real world" control

implementation. The reader will recall that a finite dimensional controllable

system

;c = Ax+bu, x c Rn

with scalar control u is equivalent, via a state space similarity transform-
ation (see [20], [35] ) to a system in rational canonical form corresponding
to the n-th order scalar equation

y~n) alyn-l)
Yere+ y' y (a-1) +--" +anly +any = u, (2.27)1

where

p() = det(XI-A) = n + aln-1 +..anX +an

is the characteristic polynomial of the matrix A. Comparable, but somewhat I
more intricate, results are available for systems with higher control dimension

[20], [2] . In [38] we note that if one employs a scalar linear observation
*l

y= h x = (x,h), (2.28);
Rn

there is exactly one observation vector hc Rn for which (2. 28) satisfies

, (2. 27); for general h the right hand side will involve the derivatives of u
of order s u - I . Systems (2. 27) are particularly easy to deal with.
Closed loop elgenvalues C1 I C21 " " "' n may be realized simply by forming

the polynomial
n n

q(k) ( cXnl+... +cnlk +cn
k=1

and determining u by linear feedback on the observation y and its

9L *, .6. **,14- 5* .7,& *J
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derivatives,

(n-k)U (ack_ck)y

k=l
Apparently less well known, but quite obvious, is that the control problem for I

(2. Z7) is, in a sense, trivial. Let us suppose the initial instant is taken to I

be t = 0 and control is to be effected during 0 z t s T. Let the initiali

state be specified by

y(n-k)(0) = Yn-k+l k = 1, 2, --- n (2.29)

and the terminal state by

y(n-k)r) = Yn-k+l k = 1, 2,- n . (2.30)

If y(t) satisfies (2. 29) and

y(n)(t) = v(t), Ost-ST (2.31)

then we see readily that for k = 1, 2,., n
k tk - I 0t  k-iy(n-k)(t) = Yn-l+l (k-)' + (t-s) v(s) ds

1=1 +

and (Z. 30) is achieved just in case
T kTk-

f (t-s) v(s)ds = Yn-k-lZ E n-i-1 Tk-
o f=1

k = 1, 2, ... , n.

This is easily solved for v in various function classes, e.g. polynomials of

degree s n - 1, etc. and, it should be noted, the solution has nothing to do

with the coefficients in (2. 27) so the calculation can be carried out once for
any given T and recorded for use ever after. Then in a given canonical

system (2.27) we need only set
n (n-k)

u(t) = v (t) Z a kt) (2.3Z)

k=l
to realize the desired control objective.

Since, in a given control context, it is not likely that the available

observation (Z. 28) will be the particular one for which (2. 27) obtains, the

above result might seems to be a generally useless curiosity. It turns out,

however, that in canonical form theory there is a counterpart to the more widely

known observer theory. if C is any nX n matrix whose minimal and

'WA



characteristic polynomials coincide, it is possible to select (non-uniquely) r,

d and J such that the augmented system

= Ax+bu (2. 33)

- = ry+Cz+du (= rh x+Cz+du since y= h-x) (2.34).

with augmented observation

w = y + j z = h x + Jz (2.35)

is in canonical form, so that for some coefficients a 1' a 2' a 2m

w(2n)+ 0 1 w(nl)+--- +aZm-lW +a mW= u.

The adjoined system (2. 34) can be realized electronically, just as an observer:

system is, and the considerable freedom in choice of C , r, d and j

provides much design flexibility. In some cases the dimension of (2. 34) can

be reduced. The proof that (2. 33), (2. 34), (2. 35) can be made a canonical I

system appears in [38]

A parallel control canonical form theory has been developed for certain

hyperbolic distributed parameter systems, involving neutral functional equation

in place of the n-th order scalar equation (2. 27). The theory is quite comple

especially as it applies to partial differential equations with variable

coefficients (see [35], (16], [38] , (39] e.g.). To give an idea how the

theory is developed we will consider the constant coefficient case of (1. 4)

which, without loss of generality, we can take to be
O~w O~w.
a 2w a = 0, tao, Osxsl, (2.36)
at ax

aw
w(o,t) = 0, -j (lt) = u(t). (2.37)

* The normalized eigenfunctions of the corresponding homogeneous system are

k(X)= 42- sin Wx, k=l,2, 3,-- (2. 38)

Setting wk= 2k 1 and forming the expansions

w(x,t) - Wk(t) k(x), (2.39)

k=l

-W vkt)$kX) (2.40)

k= I

followed by the tmnsformatiork.

,4,



w 1 1
1 w k --- (2. 41)

wehave, for k= 1, 2,3,.--

= T + -k1 u (t), = -U + - u (t). (2.42)
T k k I 2AC k -wTk.1 2

Consider now the neutral delay equation

y(t+Z) +y(t) = u(t+2). (2.43)

The characteristic function of the homogeneous equation is

p()L) = e +1 = 2e cosh X
and the zeros of p (k) are precisely the eigenvalues +iwk  appearing in

(2.42) . The transfer function for (2. 43) is
e 2 X 1 sinh + 1 (2.44)

TO M ) = ;21 +1 1 cosh k +
e +1

which can be rewritten as

To(k) x + 2k- (2.44)
= X2 + W2 2 wk

k=1 k
If we define an observation y (t) on (2. 42) by

YMt =  [h k 11k(t) +gkW~t)lI + .u (t)

the transfer function for y is, formally,

k k 'wk X ++iwk I
which may be seen to agree with (2. 44) just in case-lk

hk = gk = f-1 •

Using (2. 38), (2. 39), (2. 41), (2. 42) it may be seen that this choice of hk, Ik
corresponds to

l aw 1 l aw +w¥(t)= (l~) + UMt (-i-(lpt) + -- (l,t)). (2.45),

Th" observation on (2. 42), and no other, satisfies the scalar equation (2. 431
which serves as the control canonical form for (2.42). The details of the above

"4 , .- , - , ., . . . . . . •..- -.. -., -,.%.. . .



calculations and some idea of the form of a general theory appear in [ 38 ] and

( 9].

If the canonical observation (2. 45) were actually available, so that

we have (2. 43), its usefulness is quite clear. For, with the causal feedback
law 2u(t+2) = (1- y)y(t) - f c(s)y(t+s)ds 

(2.46)
0

(2. 43) transforms to
2

y(t+2) +yy(t) + f c(s)y(t+s)ds = 0 (2.47)
0 kt .kt

and it is known from [35], [44] that the exponential solution e , e

of (2. 47) can be made such that

Ck = iwk+ a+k 3 Q -k= 'wk+a + -k '

where a is a complex number (ordinarily negative) determined by y and

ek. -k are arbitrary complex numbers, determined by c c L (, 2], such

that M(IekI 2 +I _k1)<.

k= 1

It may be shown that these are the eigenvalues of the closed loop system (2.36),

(2.37), (2.45), (2.46).

In a given application, however, it is entirely likely that the particular
"canonical" observation (2.46) will not be available. Indeed, in the exampl4

indicated, since this observation is taken at the same point where control is

applied and might, therefore, be subject to a certain amount of noise

disturbance, it might not be desirable to use this observation in practice. To

illustrate the use of the technique of canonical augmentation (or "canonical

compensation", perhaps) let us consider the same system (2. 36), (2. 37),
but suppose the available observation is

y(t) = _- (0,t) (2.48)ax

It Is not hard to show in this case that y(t) satisfies

y(t+2) +y(t) = u(t+l) (2.49)

rather than (2. 43). This "central' control canonical form is not as usable as

the "backward" form (2. 43) because, unlike (2. 46),
2

u(t+l) = (l-Y)y(t) - f c(s) y(t+s)ds
0



is not a causal feedback law and cannot be implemented. But now couple (2.49)

with
z(t+2) + Pz(t) = au(t +2) +bu(t+l)

+cy(t+l) +dy(t) (2.50)

and let

w(t) = y(t) +z(t).
One ordinarily will take I P < 1 so that the homogeneous part of (2. 50) is
asymptotically stable, thus avoiding the growth of parasitic solutions In the
compensator. Since

[y(t+4) +y(t+Z) - u(t+3)] + p [y(t+2) +y(t) - u(t+l)] = 0
while

(z(t+4)+pz(t+Z) - au(t+4) - bu(t+3)-cu(t+l)-cy(t+3)-dy(t+2)]

+ [ z(t +2) + pz (t) -au (t + 2) -bu (t +1) -cy (t +l) -dy (t)] = 0
we find that

w w(t +4) +(1l+ p) w(t +2) + pw(t) = au (t +4) + [Il+b ] u (t +3)

.+au(t+2) +(p+b] u(t+l) +c[y(t+3) +y(t+l)]

+ d[y(t+2) +y(t)] = (using (2.49))

au(t+4)+[l+b] u(t+3) +[a+c] u(t+2) +[p+b+d] u(t+l).

Then it is easy to see that with

a=l, l+b=a+c=p+b+d-O,

i.e. with
a 1l, b = -1, c = -IV d=--lp ,

we arrive at the "backward" canonical form satisfied by w (t):

w(t+4) +(l+p) w(t+2) + pw(t) = u(t + 4)

for which causal feedback laws

u (t+4) = -ylw(t +3) + [1+p -. 2 ] w(t +2)- Y3 w(t+l)
+[-4] wt) 4  (2.51)

+(P _Y 4 1 w (t) -f c (s) w (t + s) ds
0

may be implemented, yielding overall closed loop systems

q -. ,: .:.,. ....,.,,- ,,..

• I .k i ,I ,



w(t+4) +yfw(t+3) +y w(t+Z) +y 3 w(t+l) +y 4 w(t)
4 (2.52)

+f c(s)w(t+s)ds = 0.
0

It Is necessary to check separately that the system (2. 49), (2.50), (2. 51) is
observable in any given case.

The exponential solutions of (2. 52), and hence the eigenvalues of

(2.36), (2.37), (2.48), (2. 50), (2. 51) may be determined with the same
flexibility as already noted for (2. 47). This is discussed in some detail in the

thesis of R. G. Teglas C 45]. A complete theory of canonical compensation
for hyperbolic systems remains to be developed but, we hope, the example

given here gives reason to believe that the method is a promising one. It is
clear that there are some connections with observer theory as developed in
[22] and elsewhere; these connections remain to be worked out.
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Admissible Input Elements

for Systems in Hilbert Space

and a Carleson Measure Criterion

by L.F. Ho+ and D. L. Russell++

Abstract

We study the control system

k = Ax + bu, x C X, u scalar,

where A generates a semigroup on the Hilbert space X but, in general,

the control input element b/ X. Many boundary value control systems,

point control force situations, etc., can be studied in this context . We

define and analyze "admissible" input elements b and develop sufficient

conditions for b to be admissible in terms of the Carleson measure theorem

of HP-theory.

Supported in part by the Air Force Office of Scientific Research under Grant
AFOSR 79-0018

+Department of Mathematics, University of Oklahoma, Norman, Oklahoma.

Department of Mathematics, University of Wisconsin, Madison,
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1,. . Introduction. One commonly studies linear, time invariant control

systems in a Banach space X in the form

k = Ax+Bu, xE X, uE U, (1.1)

where A is the generator of a strongly continuous semigroup of bounded

operators (S (t)j t 2t O} on X and B is a bounded operator from the

control space, U, into X. If u: [ O, = ) - U is locally (Bochner)

integrable, generalized (or "mild") solutions of (1. 1) corresponding to

an initial state

x(O) = x 0 C X

can be represented by the "variation of parameters" formula (see, e. g. [ 3],

(11] )

(t) = S(t) x0 + f S(t-s) Bu(s)ds (.2)
Q

and a number of properties of x (t) thereby deduced .

., ~ It is well known, however, that most of the "interesting" infinite

dimensional control systems do not arise this way because the degree of

controllability of a system (L 1) with B bounded is rather restricted if, as

is usually the case, U is finite dimensional or for some other reason the

operator B is compact. Indeed, most of the mathematically intriguing

examples arise in the context of partial differential equations with boundary

value control inputs, control forces exerted at isolated points, etc., and in

the context of functional equations which involve values of the control of

discrete Instants , viz. ; u(t), u(t- 1I),.... u(t-T n ) . In each of these

cases the formulation (1. 1) is inadequate and one must consider input
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operators - B whose range is not restricted to the space X.

A number of authors have addressed the problem of interpretation of (1. 1)

for operators B of rather general type. We particularly cite the contributions

of Curtain and Pritchard ( 3], Zabczyk [22 ], Fattorini [ 6], and Washburn [ 20].

It seems fair to say that, as brought out in [3] , the theory is more extensive

and generally applicable in the case of systems of "diffusion type" ordinarily

involving holomorphic semigroups, than in systems of "wave" or hyperbolic

character.

In the present article we shall restrict our attention to spaces X which

are separable Hilbert spaces and to finite dimensional control spaces U.

Taking U to be Rm, (1. 1) becomes
m

k = Ax+ b (1. )
4 jj= 1

where b is the control input element associated with the J-th control

component uj . Since every solution of (1. 2) is a linear combination of

solutions of x = Ax and the individual systems x = Ax + b ujj

J = 1, ,..., m, we may, without loss of generality, confine our discussion

to systems

= Ax+bu (1.3)

wherein the control u is scalar valued. Much of our theory can be

extended to cases wherein U is infinite dimensional but we will not do

* that here.

What distinguishes the present study from earlier contributions is the

attention which we pay not only to the relationship between the operator, A,

and the input element b , but also to the relationship between b and

the senigroup S(t) generated by A. In cases where A has discrete
seiru4.t ae
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spectrum {k j k e K}, K being a countable index set,

to a study encompassing the input element b, the eigenv

of A, the corresponding eigenvectors of the dual operator,

defined in Section 2, and the exponential functions expI

It is in particular reference to the latter that what is probably

important idea of this paper is develcped. We show that a

A' condition for b to be an "admissible input element" (del

.4 can be given in terms of a measure on Borel subsets of the cor

whose support is {-Xkk k e K) . When that measure turns

Carleson measure the input element b is admissible. ThL

out yet again the intimate relationship between the control the

dimensional linear systems and parallel developments in HP

([5], [8], [12]) and the related theory of completeness ai

of sets of complex exponentials.

'p * • q- ° - . °

'.a Ip. . . - - . .
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2. Admissihle Input Elements.

Let X be a separable Hilbert space and let A be a closed operator

on X with domain, £ (A), dense in X, generating a strongly continuous

semigroup of bounded operators S(t) on X for t - 0 . For b e X

the (generalized, or "mild") solution of
2Ax + bu, u C Lo c [ 0, -) (2.1)

x(o) = X0 C X. (2.2)

is given by the "variation of parameters" formula

x(t) = S(t)x 0 +f S(t- s)bu(s)ds ('.3)
* 0

and may be seen to be a continuous function x : [ 0, a) -- X. Whether

k (t) is defined for each t - 0 and (2.1) holds is more complicated:

sufficient conditions are that b E &(A) or that u is differentiable as

a function of t ([3], [11])

In this paper we wish to consider (2. 1) , (2.2) in certain cases where

b does not lie in X and to provide, for such b, a formula parallel to

(2. 3). Our approach is similar to that used in [14].

Identifying X with its dual X, we denote the duality relationship

by (xy) , x c X, yEX, linear in both x and y. Where X is

the complexification of a zeal Hilbert space X0 the conjugate element "7

is well defined for each y c X and, with ( , ) denoting the inner

product in X,

(x,y) = (x,j-) , (xy) = (x,y)

The bilinear form ( , ) is symmetric, i.e., (x,y) = (y,x), x,y y X,

.* . . . . - . , . . .. . . . . . ..,,. . ....'*\ . ,- - . a : ',. . .' .
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and, forall xeX,

UxUx sup (x, y)I (2.4)
Y O X 1 I

The symbol A' will be used to denote the dual of A relative to the bilinear

form ( , ), that is

(Ax, y) = (x,A'y), x E t(A), y E S(A)

The operator A' is closed with domain (A) dense in X. It is known

that if A generates a semigroup S(t) , then S(t)' is also a semigroup,

generated by A' . See ( 4 ] for details .

Let Y be a dense subspace of X which is a Hilbert space in its

own right with norm I Iy stronger than H ilX so that the injection

map

J(y)=y, yc Y,

is one-to-one and continuous with dense range Y C X. We further suppose

that Y isinvariant under the action of S(t)' : y O Y => S(t)'y O Y,

and that this map is continuous with respect to H S(t)'yiy. Hy y and the

usual topology of [ 0, a ).

Let Y' be the dual of Y with respect to X as described, e.g. in

[1], [14], [15] . This means that Y' is the closure of X with

respect to the norm

I(x~y)I
UXiIx, sup (2.5)

y O Y IIlyly
y, 0

%' I.V % 9. .' 9* *-. . . .~ .... .. ~ N - . - * *-.. • . .. - .- ... -.-.. - V % -: " .i. : - , .
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It is known that ', so defined, is a realization of the dual space of Y

and it is easily verified that the bilinear form (x, y) may be defined, by

continuity, for x e , y E Y as

(x,y) = lim (x k, y)

where {xk} is a sequence in X converging to x in 0 By, So

defined, ( x, y) generates, as x ranges over Y' , all continuous

linear functionals on Y. We have

Definition 2. 1. In the system (2.1), i.e.,

x = Ax +bu, u c L o 0 O, - ) .

b is an admissible input element if there exist Y. Y', as above with

b e Y', such that for every T > 0 the continuous map

IT' :Y C[O,T]

defined ]2y

(Ly)(t) = (b,S(t)'y) , ye Y, t C [0,T] , (2.6)

has a continuous extension to

L - X OZ[o,]

Remark. It is clear that this amounts to the statement that in the dual observed

system

AS= Ay

z = (b,y),
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4. 8

b is an admissible observation element; that is, for y c Y,

z(. ) = (b,S(- )'y) c C[O,T],

this relationship extending continuously to z (- ) E L 2, T ] for y c X.

To verify that Definition 2. 1 enables consistent definition, at least

in a generalized sense, of solutions of (2.1), (2. 2) when b is an

admissible input element and to establish some of the properties of the resulting

solution, we present

Theorem 2.2 . If b is an admissible inpu element the formula

(x(t),y) = (x 0 , S(t)'y) + f (b,S(t-s) y) u(s)ds, yE Y, (2.7)

0

defines, for each t a 0, a unique element x (t) e X. Given T > 0

and u e L2[0,T]

x(t) = S(t)x 0 +B(t)u, t c [0,T] , (2.8)

where B(t) is the strongly continuous family of bounded operators

B(t) : L OT] -- X given by

(B(t)u,y) =f t(b,S(t -s)'y) u(s)ds, Y Y. (2-.9)
0

Proof. From (2. 8) and the fact that Y is dense in X it is clear that

x(t) - S(t) x 0 
=  (t) = B(t) u

where, for y C Y,

(Q(t),y) = ft(b,S(t-s)'y) u(s) ds
0

Let x e X and let {yk be a sequence in Y converging to x with

respect to I • IX Since b is an admissible input element the

............................................... I 4' ' % I
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corresponding functions hk defined by

hk(t-s) = (b,S(t-s)'Yk) (2.10)

converge in L [ 0,T] to a function h c L [,T] . Definingt

M.(t)x) f h (t - sl)u(s)lds,
0

we see that for t C (O,T]

II((t),x) I S 1hUh 1L 2 0T] 1ll L OT]

S il I lXlX ll 2 [O,T

since (cf. (2. 6), (2. 10)) h = LTx. Hence e (t) 1 X' = X. This

also gives

gI t~lx MIX g IIUH L [0,T]

showing that for t c (0, T ], B (t) is bounded with

B9 (t) 11 LTII

To establish that W (t) is continuous in t for each fixed
u C L[O,T (and, hence, that B(t) is strongly continuous in t) , let

O:StStST and form, for y c Y

t( (t)- Mt, y) fJ (b, S(t - s'y) u(s)lds
0

t-f (b,S(t-s)'y) u(s)ds = (with r = s - (t- t))
0

t-t

+f (b,S(t-s)'y) u(s)ds =
0
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t t-t

= (b.S(t s)'y) (u(s+(t-t)) - u(s))ds + f (bS(t-s)'y)u(s)ds

v0 0

SIII l UYlx( ilu(" +(t- t)) - uA Oz[ ot + ilu 0 Z[ 0,-t "

Since Y is dense in X and since for fixed u E L2 [0,T] we have

l:m li uU[L. t = 0,t -t-o0, ![ot -t

link Du(. +(t-t)) -u [0 =,lim lu(. + (t-t)) -UL[ t = 0

t t t Lt t

We conclude that for fixed u E L (O, T], and t, t as described,

Wt~il()- VtOiX = ^Im I.t)- (t)jfX = 0
ttt t 4t

and thus (t) is continuous in X . This completes the proof of the

theorem.

Let H be a separable Hlbert space and let {pkI kE K) be a

sequence in H, K being a countable ordered index set. The Pk are

strongly independent if no Pk lies in the closed span of (p, I f kA

If, in addition, there is a positive number c such that whenever

p = Z 'n kpk ,  (2.11)
KO

the a k  being complex and K0  an arbitrary finite subset of K , we

have

Z lk1 2  S C2  p 2 (2.12)
K 0

we say that the pk are uniformly 2 -independent since (2.12) implies

_L sic (212 (mp.13)1ak1z  :S cz I p 2z ( . S

K
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i2

whenever (a k) C f 2 and p = akp k is convergent in H.
K

If there is a positive number C such that

2 2 % 2
UP1 C E I c'kI

K0

p as in (2.11), we say that the sequence {pk} is uniformly f 2-converqent
since this property implies that if (a) E the series a P is

siceuu roeryk .g kk is

convergent in H and

22 2II Pg RH- C E I akI (2.14)
K

Recall that a sequence {pk}  in H forms a Schauder basis for

H if for every p e H there are unique coefficients ak such that the

series E O'k Pk converges to p in H ([21]) . A Schauder basis

which is, at the same time, both uniformly f Z-independent and uniformly

12-convergent is a Riesz basis . For evident reasons we shall also use,

synonymously, the term uniform f -basis . If (pk} is a uniform f -basis

for H then every p in H has a unique convergent representation

K

with (cf. (2. 13), (2. 14))

c-Z jIakl S I ip 1 H laki.
K K

For the remainder of this section we suppose that

(1) the operator A with dense domain 8(A) r X generates the strongly

continuous semigroup of bounded operators S(t), t at 0;

I4 " ,' ,' .;'.'., . ' .4';''? 'e: ,;-, : . .-,'.n,'; ' %" ' '.-4' 5*5-5 ,; -;,.:, '''-,I
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(ii) a (A) , the spectrum of A, consists of discrete, simple

eigenvalues Xk, k e K, and the corresponding normalized eiqen-

vectors Ok" k E K , form a strongly independent, uniformly 1 2-

convergent Schauder basis for X.

Since the 0k , k c K , are strongly independent and have closed

span equal to X there exist unique biorthogonal elements k k e K,

such that

(*I~k' 1, k (k, IeK.( k" 0, k

As is well known, the ' k are eigenvectors of the dual operator A'

corresponding to the eigenvalues X , k e K. We further assume

(1i) the elgenvectors ik of A' have the property

%PkCYCX.

(this is true, for example, if Y D S((A')r) for some positive integer r)

If x C X, the fact that the Ok form a Schauder basis in X

implies the existence of unique k" k c K, such that

X = ; k~ k (2. 15)
K

the series converging in X From this it is evident that

tk 4#kk' x ) k e K.

We are not assured, in general, that the tk are square summable but the

uniform I 2-convergence property of the Ok shows the square summability

of the sequence Q k) to be a sufficient condition for convergence of (2.15).

.g** .~..
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Since we assume the lie in Y, given any element b c Y'

(and this includes b e X) we may define

bk - , b) (2.16)

and obtain a set of coefficients bk, k c K , associated with b . In

general it is not possible to recover b from the coefficients bk . (An exampl

2 1 1 ikxis X = L[ 0, 2r], Y = H 0,2w], qi.(x) = (Zf)' e . k = 0, 1, Z.

The 4k ( = Ok )  here form an orthonormal basis for X and belong to Y

but there is a non-zero element, namely 6(0) - 6 (2w) I in Y' for which

all of the bk are zero, This arises, of course, because the closed span

of the #k in Y is not equal to Y.) As a consequence it is not

generally meaningful to write b = Z bk k"
K

Nevertheless it may be meaningful to consider the initial value problem

(2.1), (2. 2), i.e.,

k = Ax + bu

x(O) = x O c X, uc L [ 0 '.00 o

for certain b c Y' namely, those that we have already characterized as

admissible input elements. We wish now to show that the class of such

admissible input elements can be characterized in terms of the coefficients bk

and the eigenvalues xk If x (t) is the solution of (2.1), (2. 2)

established by Theorem 2. 2 for an admissible input element b then,

in particular, for t a 0,

(x (t)- * k ) = (x 0 , S(t)' *k)

+ f t(b, S(t- s)' Ik) u(s)ds
= e 0k + ftek(t) u (s) ds

0, k 0
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where

S0 K k kt

We do not know that the numbers e x0 , k are square summable

but the series

Se X k k
K

must converge to S(t)x 0  by virtue of the (assumed) Schauder basis property

of the k It follows that a sufficient condition for x (t) to belong to X

is that the numbers

t Xk(t-s)
k(t) = bkf e u (s) ds (2.17)

should be square summable for each t - 0. Equivalently, making a trivial

change of independent variable,

t Xks
k(t) = bkJ e f(s)ds , f(s) = u(t- s)

The necessity of considering an infinite number of values of t can be obviated

by taking f to be an element of L [ 0,T] , T > 0 fixed, and defining

f(s) - 0 in ft, T] for t < T. The map

= ek kS f(s) ds f L 2 [0,T], (2.18)
0

so defined may be designated as

L [0,T] x, (2.19)

LT(f) = x = Z Ck Ok (2.20)

K
and it is easy to see that L'T  is the dual of LT X L2 [0,T] as

defined by (2. 6) . Thus the boundedness of LT, as required in

4. ~ l*i,,
u .

L I . s .I~d ~~l l,,b, ,. .. a, J m .. t. -
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Definition 2. 1, may be obtained as an immediate corollary if it is shown that

LT , defined by (2. 18) - (2.19), is bounded. For our present purpose

this is the route of choice.

Extending f further via f (t) = 0, t > T, the Laplace transform

of f is the entire function
= fT-e.ZT

(z) = e 'zt f(t)dt= f e f(t)dt.

In terms of we clearly have

Ck = b k 0 (-Xkk), k c K,

and the following proposition is evident.

Proposition 2.3 . The operator LT (equivalently LT) is bounded

Just in case, for every f E L [ 0, T I the Laplace transform of f, tp has

the property

Z k 0(-Xk)l
2 < CD (2. 21)

K
We are fortunate that the inequality can often be established with the

use of the concept of a Carleson measure and the corresponding Carleson measure

theorem as it applies to the space

2 2"H 1 = H {z I Re(z) > a) a real (2.22)

The space H 2 {zI Re(z) >) consists of those complex functions O(z),

analytic in Re(z) > a, bounded in each half plane Re(z) - c + 6, 6 > 0,

and satisfying

f 01(i +
-i

I ) 2 d n s Mdi >a, (2.23)

- *, ,,. *** ** * . . , ,,,* ,, * *...* - '- . vtl-",. ,a ,jM. -- m. . *.,:.L. .. i.,L.. ..,. ~
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where M is a positive number depending only on (and not, in$m
particular, on e ) . It is known ( see, e. g. [10]) that each such

function has a limiting "boundary" function

= lim ( +iTI) (2. 24)

defined almost everywhere in _ < T] < and c(TI) is measurable

with

f (.9)12 dq -- MU

Each e H2  is the Laplace transform of a unique function f E Loc 0, -)

such that

f e-at f (t) dt < -.

Let p be a (non-negatlve valued) measure defined on the Borel

subsets of [z I z > a} . Then P± is a Carleson measure if for every real

-r and every h > 0

P ({zI--h_5Im(z)--5 T+h, a <Re(z)_< a +h}) Ah (2.25)

for some positive A depending only on P (not on h)

For a Carleson measure we have

Theorem Z,4. If IL is a Carleson measure on {z I Re(z) > a} with A

as in (2. 25) if 0 c H, and 0 is given by (2.24), then

f W dp (z) 2 (2.26)
Jz Re M(> 2? f as-da('(2.26)



17

A proof of this theorem is offered, for the sake of completeness, in

Section 4 of this paper. The relevance of this theorem for our present studies

is exhibited in the selection of a particular measure ± . For b E Y and a

given discrete spectrum {k for A, let

= 'b, {Xk}

be defined by

X(-k) = Jbk 2 , k E K, (2. 27)

L ({zIRe(z) >} - (Xk Ik E K})= 0. (2. 28)

In this case the left hand side of (2. 26) becomes

4b

kO (-K k) I? (cf. (2.21)).

K

' The PlancherelTheorem, on the other hand, gives

fc1aml dT1 = 2wf f e-"tf(t)17 dt
0'. _ e21a lT  TZ

2e f If(t)l2 dt,. 0

when the support of f is restricted to [ 0, T] . Thus

I bko(_Xk)< 2000e- a-T A f T If ( t ) I z dt
K 0

and, in view of our earlier discussion, we have

• y0

Corollary , 5. A sufficient condition in order that b E Y should be an

admissible input element for the system (2. 1) , wherein a(A) = {) k Ik E K)

and the corresponding elgenvectors Ok' k E K, form a strongly independent,

uniform 2 - converQent Schauder basis for X, J that the measure

t 1b, {X defined b (2. 27), (2. 28) should be a Carleson measure in

* 'V,% - .',% '% 4..4." , -.- ,'; -,- . - ' '-.-. ..* . .-% .. -. %.v .'...*.. ... . "-,""", ''" .'',-, -, "- . , - - . , - """ s "" . -' " " ''.



(z Re(z)> a} for some real a.

We remark that the assumption (i) above together with t

Theorem ([4], (11] ) implies that the complex numbers -k

indeed, confined to some right half plane Re(z) > a . The

support of f is restricted to [ 0,T ] implies that the corresi

transform $ is entire and satisfies an inequality (2. 23) for

(Me= M, here).

,4q

- V q
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3. Identification of Admissible and Inadmissible Input Elements; Examples.

Our first task in this section will be to develop a method whereby input

elements b not in the state space X may be identified as particular elements

of a larger space Y' . The assumptions made will be somewhat more

restrictive than thos introduced in Section 2. They are by no means necessary

conditions .

Let us suppose that the operator A, generating a strongly continuous

semigroup S(t) on the Hilbert space X, has (dense) domain j(A) and

that A possesses discrete eigenvalues 'k k c K, with

lim .xkk =
p (k) --

Here p (k) denotes the number of elements I c K such that I < k with

respect to the assumed order relation on K. The corresponding normalized

eigenvectors Ak are assumed to form a uniform basis for X . We denote

the dual operator by A! . It has the same eigenvalues kk and the corresponding

eigenvectors *k' k e K, will be assumed normalized so that

T~he a k) = f, :=

The 4k also form a uniform basis for X, as is well known Then it is

easy to see that

a (A) = {y = E Xk Ok )Lk I < }
,,K K

and that

&(A') = {y = Zyk kl E IXkYk l <-}.
K K

For the work of this section we take Y = b(A') with the graph norm

4? .'q.v-- S ***4:
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li 114, a Z + xk"i') lyl z

where

Y Z Yk 4k

k = 1

in X. Then Y C X and the injection mapping is continuous. It will

often be possible to identify a Hilbert space Z C X with continuous injection

map such that 0 UZ is a familiar (e.g. Sobolev) norm and Y is a

closed subspace of Z on which the norms j JZ and i Uy are

equivalent.

We will be concerned with two different extensions of the operator A.

We suppose first of all that there is an element x e X not in 6 (A) and

that L is an operator on X such that

M(L) = +uxl ee A(A), u scalar}

Lx = Ax, x c (A).

We will refer to L as an "operational extension" of A. Its significance

arises from the fact that many of the inhomogeneous boundary value problems

arising in applications can be expressed in the form

dx
d-: = ix, (3.1)

with the restriction

X +u e(L). (3.2)

The second extension of A, which is a map

A:X-- Y'

is a standard one, often used, e.g. in [14] . If y, TI E a(A) , S(A),

respectively, we have

4' . ., """ , 4-.". "4. :r , r .  ,
q ' , '' ' I a
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(Ay,Tj) - (yA'XTI)

Since A' Y = .) X is continuous, the form (y, A' T) extends

to (x, A'1) , x c X, by continuity and density of a(A) in X and,

so extended, (x, A' I) defines, for each fixed x c X, a continuous

linear functional on Y, i. e., an element of Y' . We define

X X-.-Y' = (S(A'))'

by

('xf 1) = (x,A'T)), xE X, Ti Y= a(A').

Our first goal, with reference to the system (3.1), (3. 2), is to replace

it by an infinite set of scalar ordinary differential equations

dx
=k kXk + bku, kc K, (3.3)

where

x(t)= j xk(t) 0k
kc K

convergent in X . In order to do this we recognize first of all that

Z = E X'k'k
K

represents not Lx, but rather Ax, since
< qI) = (xA q ) = ') - k .

We rewrite (3. 1) in the form

dx = x +Lx -,% (3.4)dt-

an equation in Y' Then, since x is to have the form (3.2) with

e A(A), and since



Z2

AlA

Le Ae A, j CA)

(3.4) becomes

d--= Ax - (Lx-Ax)u.

We define b c Y', a continuous linear functional on Y = a(A'), by

(b,:T) = -A x, - ) (Lx, T ) - (x, A '1) (3.5)

for I c S(A') = Y. We then have

K
where the "control input coefficients", bk, are given by

bk = ( b,k) = ') ( x A' )

S(x (3.6)v=k- )k(X, 410

In most examples we shall have Lx = 0 . Then, if

X Exk= k

K

convergent in X, we obtain, in place of (3.6)

bk = -Xkx, k K. (3.7)

Also, in this case, the equation (3. 5) becomes

(b, q ) = -(x, ATI) . (3.8)

The equation (3.5) (or (3.8)) will generally be used to identify the

functional form of b while (3.6) (or (3.7)) will be used to identify its

expansion coefficients in terms of the elgenvectors Ok of the operator A.

While not all admissible input elements can be treated this way the class is

large enough, we believe to warrant the detailed description we have given here.
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Example 1: Heat Equation. Let x ( s, t) satisfy
ax 82x
at = 7, 0 < s <1, t>0, (3.9)

as
with boundary conditions
4.x

x(0,t) = 0, ax (l,t)+ 1 a (l,t) = u(t), (3.10)

where a, 13 are real numbers, not both equal to zero . In this case

we take

X= L[0, ]

2 
xAx = -- x xc A(A) = (xc H (0,1] I x(0) = 0,

as
ofx () + 3X,(l)= 0)

Lx = a • x e(L) = {xe H20.] jx(o) 0 1

ct+a +0
s(2-s) (3.11)

With
1

(x,y) =f x(s) y(s)ds
'A 0

we see that If x, y e a(A)

(Ax, Y) - (x, Ay) =f (x"(s)y(s) - x(s) y"(s)) ds
0

Td f e (S) y(s) - x(s)y'(s))ds = (since x(0) y(O) = 0)
0x' (1) yMl - x Mly' (1)

x'() + xM) y() - x(l) +y'(l), 0

-- 0

U90. ~ t . ~~. V '
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and we conclude A= A. In the first case of (3.11), a +1 3 0,

Lx = 0 and we have, for T1 e6 (A) = 8(A)

(b,) = -(^xAgn) = f s 4'(s)ds
a-f'(1) + 1(1)

1I + ()0) 1

a1(1), M CL 0

Thus we have

~A0b = - ()•(3. 12)

6'(1), a o

The two agree if neither a nor 3 are zero because the lingar functional

16 1 6'(1) is zero in (8(A))' Y' in this case
+ a 2
The eigenvalues of A are X k = -Wk where, for k =1, 2, 3,...

a sin (wQk) +Pc3W Cos(wk) = 0 * (3.13)

Let

2 = sin 0 k

= Cos e

Ja I 2 +132c,
Q) k

and (3.13) becomes

cos (k ek) = 0

so that

Wk -e 2k- Ik " Ok = 0: ) k = 1#,2,3.... ,

giving

5,



..- -- -- -- - - -) 25

ak I-2 , +sin- 2 /'k ( 2 2 . F

It is easy to see that 1 = as k so
4)k k() a -~ s

2k -I I
"k 2---i + 0(k) 0, (3.14)

k= 2 1)w + I = kw , 3 = 0. (3.15)

Defining

Vk = sin (wks  ds
k f1 ~~~) ds

0

it is easily seen that in all cases the vk are nonzero and

i.

Then the elgenfunctions

Ok(s) = -- sin(wk s

form an orthonormal basis for L 2 (0, 1] . It follows then that the coefficients

of the input distribution elements (3.12) are given by

I-
Ii

,,0 -Fk sin (ck)' 0

bc k (3.16)W k Cos (wo k)

We consider here the case 1 3 0, saving the analysis for 1 = 0

until later in this section. If 1 A 0, formula (3.16) shows the bk2
to be uniformly bounded . The complex numbers - = k have the

property (from (3.14))
2k. - I) 2 2 (3.17)

X,. ,........ . .-'..." ."



26

Thus the number of such -X k in any set "lIm(z) - :s h,

as Re (z) ! a + h is S (hl/2) and it follows that the measure IL with
Ca

I(-Lk)  IbkI2 , I((Re (z) -a} -- U {--k}X = 0 is a Carleson measure.

Hence if 1 A 0 the boundary input (3.10) is admissible.

In this case the result Is easily obtained without the Carleson measure

theorem; for, if the coefficients ck  are square summable and T > 0 ,

CD bce '-k 2 sP(bk}
Z bcke supc{Ikbk1 17iZ C fTeZktdt
k=1 L?[oT] k k=1 k 0

S supFIbkl , a f dt =SuP{ } Z
b, k11 i I k 2 iLkk b l k k 1 '

(3.18)

since sup (I bkj < , and we conclude that the function sequence
k

{(bk0 kt} is 12 -convergent in L2 [0,T]. Our next example is chosen

in such a way that a simple argument of this type does not apply and the Carleson

theorem is actually needed.4,

Example 2. Another Heat Conduction System. As a further example

we ask the reader to consider the system shown in Figure 3.1.

.1
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z

z= 0

X=o 0X=l

Figure 3. 1

The shaded horizontal bar, B, represents a layer of material, whose depth

will be assumed negligible, and whose heat conductivity, k , is small in

comparison to Its specific heat R while the region n2 consisting of the

half strip

a0 :S x :S , z:SO0,

Is assumed filled with a material whose specific heat, r. is small by

comparison with Its conductivity, K. The heat flow equations are thus
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RT -a Y a (3.19)

X2
ra K - + - (3.20)atax 2  8zz 2

together with boundary conditions

aT aT (,t) = (3. 21)

. j Ozt) 0 8 ax' (1, z, t) = g (z) u (t), (3.22)

a.m ( Z't lm (x, z, t) 0 (3. 23)
I_ Lim T z -0.- -D

Z. -0 9

T (x. 0, t) = T (x, t), 0 :Sx l. (3. 24)

The inhomogeneous boundary condition along x = 1, z : 0, represents

the Input heat flux. In (3.19), (3. 21), T (x, t) is the temperature in

the bar, r (x, z, t) the temperature in 0 .

If we assume k, r vety 3;aAll by comparison with R, K, we may,

as an idealization, replac3 3-o 19 and i,. 20) by

R LT __ (3. 25)

at "K
a 2 T a2 T
- + = = 0, (3.26)

IX 2  Oz 0

retaining the boundary conditions (3. 21) - (3. 24) . We take as our basic

Vstate space

]r= (T=T(x) T L2 [O,1]}.

We define an operator A on U with domain

= 1

" '.. ... ..,,,, ,, '. ' ' ;"..... ',,,.-.'.., ..v.'":'..',,. v ''., , .,... ,v ..",8(vA), =. I. .,'.i,,.,",..'.(o ,. ,. .1 .1]..,, . :'.'',',.', .'
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as follows Given T c 8(A), we let T = T(x,z) satisfy (3.26)

in 17 together with

,r(x, 0 T T(x), 0"--sx --s 1 (3.27)

and

0r Z) 0 8 ( )
-a - Ox 1 z (3.28)

lim -r( z) = 0 In L2 [ 0,1]. (3.29)8 Z OZ -=, qD

.im T(., z) =0 in H1[0,l]. (3.30)
Z -.. -m

From [14] , for T c 1110,1] we have T e H3/2(1) The trace

theorem ([1], [14]) then gives

-~- 0) C 0[ 1],9z

and we define

AT K ,0 (3.31)

So doing, (3. 25) becomes

T=AT (3. 32)

and (3. 31) is subsumed In the definition of A.

Lemma 3. The operator -A is the positive square root of the Sturm-Liouville

operator

ST K d T

R dx

with

* 'P 4i
t ~ -. *~ ~/ ~-:-.&.--V~~~
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d dT
,T)='.TE H1 [O11] I (0)i = (1) = O}

2
Proof. We compute (-A) T for T c b (T). For such T the solution

of (3. 27) - (3. 30) c H5/2 (E2). If we let

K a xr(x,z) 8 (X a Z )

then

,(,o)= -AT

and

-K2  12 r1 0)-A)z T = 0 1.o) = =_ 2z
R Oz

K2 a2 T ) K2 d2T

R ax 2 (•,o) R dx

since r c H5/2( ) together with (3. 26) implies that

a .. 2 T 2 L

70 0, ) + " 0), = 0 in L [0,1]

and T=r(" 0).

The positivity of -A follows from the divergence theorem. If

T e 8(A) and T = T (x, z) is constructed as above, we have

S[( (.L ))z + ( (x z)) 2 ] dx dz

= ffjvTfx,z)il dxdz (V= gradient)

= (div( (x,z)Vr(xz))-(x z)A2 r(xy)] dxdz

(a 2= Laplacian) = (from (3.26))

= ffdiv(r(x,z)vt(x,z)) dxdz= (using (3.27) -(3.30))

= j r(xO) (x 0)dx (T, -ATa z [0,1

' .' .
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This completes the proof.

Accordingly, A is self adjoint with eigenfunctions

0ox) 1, k (x) = 'I cos (kw x) k= 1,2,3,... (3.33)

and eigenvalues

Let w (x, z) be the solution of the following inhomogeneous

boundary value problem:
o2 w 82 wa X + a- = 0 in Q
ex OzT

Sw 8w
- (0, z) = 0, (l,z) =g(z)

xw
lim -- (x, z)= lm w(x,z)= 0.

z " - 8 Z

w(x,O) - 0, O~sx--l.

We will assume that g (z) is such that the resulting w (x, z) c H 2(

In this case the inhomogeneous equation can be interpreted as

1 = AT +bu

where b = b (x) is given by

X awb(x) = - ( j-xO)

To compute the coefficients of the expansion

-.: b (k) b,;
lc=0

we note that since A Is self adjoint, tk (x) = $k(X), and
1

bk  f £ k() b (x) dx. (3. 35)

0

• , ,,.,4 , - ,, , .- - , . .- . -- - . . . , , -. .- . . - .. . . . . .- . . . , . .- - . .-, .. . . . . . , . , - . , ,
4' " " " " " - - ' -- . - ,.. ' ', % -... ' -.- " " .,.'- " -. . .", ', ' - ' ' . ' -,-. .. ' ... . - .,'r ",_
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Let 'k(x, z) be the solution of

22

ax2  az2

with

(Dk(X,0) = k(X)

and homogeneous boundary conditions of the type (3. 27) - (3
2 a2  a2

Ihen,, with . 2 -+
r'.: x 2 2

0= t<,2c~z),w(x, z)- w(x, z) 2

f f div[i.(x,z) gradw -(x,z)-w(x,z) g

R R
:" ok(x)b(x)dx +f 4kl,z)g(z)d

giving (cf. (3.35))

0b k = !R f" Ok (" z) q (z) dz.

Now It is easily checked that for k = 1, 2, 3, .*

-. (x, z)= (42-cos kirx)(exp(kzir)z

so that

(-I) k %r2-- exp(kwz)

and thus

k -)k 2" K eO

k R expkwz)

60%Z.
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The Carleson measure theorem- can be used in a slightly different way

than that set forth in Corollary 2.5 to show that if g c L2 (-=, 0 ] then the

bk are square summable and b is, consequently an element of L2 [ 0, 1]

Writing = -z, g(-C) = gQ), we see that

b" = -- 1) 
k 

Nr2 K ex -= C )d

*'-' bk = K f
0

Since the measure IL assigning the value 1 to each of the points kwr,
k , , v2, is clearly a Carleson measure, and since ( Rl)k"

changes only in sign, {bk} c •

I g (z) is just bounded and measurable on -<z 0 we can

almost trivially obtain

bk k

and the b will be square summable.

It is obviously possible to replace g (z) by distributions of various

types. Taking g (z) = 8(0) corresponds to a point heat source at the

comer x= I, z = 0 and leads to

b k = R K (3.36)

In our present example X = L2[0,1] . Y= t(A) = H1[0,1] and

Y = H1 [0, l] . The coefficients (3.36) may be recognized as those

corresponding to 6(1) (referring now to distributions along the x-axis) .

K
Any measure 1L assigning to the points -Xk = K ki values

bk,2 which are bounded evidently yields a Carleson measure and we conclude

that all of the above cases correspond to admissible input elements . In this

case the argument represented by the inequalities (3.18) will not work

because the series i ( jL) is not summable in this example

k .' "
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Example 3. Hyperbolic and Neutral Systems.

A wide variety of systems involving linear hyperbolic partial differential

equations in two independent variables x, t, or neutral functional equations

* lead to systems of the form described at the beginning of this section, the

I' eigenvectors, Ok" of A forming a uniform f 2-basis for the state

B space X and the eigenvalues k confined to a vertical strip

a < Re ) < 13 in the complex plane. It also usually turns out in these

cases that the number of Xk  in any rectangle

a < Re(k)< 13, y <Im(k)<6

is less than or equal to M(6 - y), where M is a fixed positive number.

It is evident that the measure (2.27), (2. 28) is a Carleson measure in these

cases whenever the control input coefficients b k constitute a bounded set

Example 4. Linear Surface Waves . If the operator A is defined as

in (3. 31) but, instead of the first order system (3. 3z) we consider the second

order counterpart

C +At= 0 (3. 37)

-. ~we obtain the linearized equations for small amplitude waves on the surface

of an incompressible fluid. The theory is more fully developed in [16], [171

[19]. With Tj = , (3. 37) is equivalent to the first order system

To obtain a topology corresponding to the energy of the system one defines

:.4
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ll~) I to + +(T,A-173) (3.39)
1 e L 0o°1] L0 [0,1]

where
1

L?-o, 1] E L-[o,1] if 1(x)dx = o}. (3.40)
0

2
The restriction to Lo [0, 1] corresponds to conservation of fluid volume.

On the domain

0 (A) ={ Il[o 011' E f (x) dx = 0}
'.1 0

the operator A is invertible its eigenvalues are (cf. (3. 34))

- k,, k = l,2,3,... (3.41)

with the same eigenfunctions Ok(x), k = 1, 2, 3,... , as shown in

(3. 33). Correspondingly, the operator a has eigenvalues

Kr 1/2 kl/2 -E yk1/2P k = 1,2,3,...."Ok" -'wk' wk
(3.42)

and the eigenvectors, orthonormalized with respect to 11 H e and the

corresponding inner product are( ),-..(
4k = Iwk O) \P ica k~k ) ,k = 1, 2, 3,..

(3.43)

To discuss admissible input elements in this case we let 1k k

be non-negative numbers, k = 1, 2, 3,..., and define

jL{iWk} = 1k • {-'wk} = 1-k' k= 1, 23,,

i. ({Re (z) at a) - U (fi)} U (-iakl)) = 0 .
k=l

4. , € "€, -' . . .'% , .. .- ,-,-..','," ".. .'-, .- ;'''''•' .'2.;. ,-,- :.i,' i,2.:".;,°.'i .,,. -



36

Tet 3(), - < < , be defined as the piecewise linear function

such that in the interval [iok' i"k +1]

13~(w) 1 k(k+l - ') + 3k+l( - (k)
Ck+l - 0k

Since i/ +/2

fwklW123 w) d k k 2k +1 k+l_ I wk+ Ok

- + k d 1 k+' k

we conclude that PL is a Carleson measure just in case there is a constant

C such that

f " 1 (( a +( )  - ,- a(3.45)a
whenever 0 < a < T, together with a comparable condition involving the

13 and negative values of o . But (3, 45) is true just in case

W /2"k C" k = 1, 2,3,.

and the comparable condition for negative k is

1/2 P s k 1, , 3 ,
" k -ke e

Thus for the inhomogeneous system

(.- = aQ) + (b u

the input element (b, with
.

2
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Ok b b1

k

'w k Ok b 2

is admissible, from this criterion, if

k1/2 ( Pki + 113-0 C) < C (3.46)

for some fixed positive number C . It will be noted that this is (slightly)

less restrictive than the requirement

Dcample 5. Negative Results. For any system similar to the one in

Example 4 but with Ick+l - 'kl = a (I/kl/ 2 + e) the Carleson measure

condition will be stronger than requiring b e X . Hence failure of the

Carleson measure condition cannot be used to show that an element b is

not admissible, for any b e X is admissible.

To illustrate what can be done in a negative direction, we return to

Example 1 with = 0 . This situation has been studied, using a different

approach, in [13] . We present here an argument more in the spirit of the

present work. As shown in (3.15),

2 W =- 2 W2 (3.47)k =k
and (cf. (3.16) and, w.l.o.g. taking a = 1)
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4,'..

, bk =b%2 kv cos (kw)= (-l) k 42 kr . (3.48)

Since k= Ibk12 = 2k 2 2  while (k+l) 2 2 -k 2 2 =2kir2 + 2 ,

it is not hard to see that the measure R = t b, { kk R (--k) = I bk2 s

not a Carleson measure in this case . As we have remarked, this by itself

is not enough to show that the input element with coefficients (3. 48) is not

admissible. To show this, we ask the reader to consider the function

*. r(Z) = (z + 11- r

analytic in the complex plane minus the cut consisting of {z I z real, z s -1}

If r > L A *r is square integrable on any vertical line {z I Re (z) =

e , C it 0) with uniformly bounded L2 norm and * r(Z) is bounded for

Re (z) -t 0 . It follows that %P r(z) is the Laplace transform of a function

f r =fr tM with fr eL 0[, -). Then

bk fe-k2V2t fr (t) dt

2 2 (- lkq--k•(l)k '- k v r (k(k22 +,) r

&- ( k l 2r ), k-. (3.49)

This expression is not square summable if r satisfies the inequalities

1-Zr a 1
2'

- so we require

23a r <

'I".1
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Let E be the closed subspace spanned by the functions ek in

L2 [ 0,) and let ET, T > 0, be the subspace of L2 [O,T]

consisting of restrictions to [0,T] of functions in E. If fr is

the orthogonal projection of fr onto E we clearly have

- W = 2w 2fe" fr(t)dt f f r (t)dt
0 0

It is shown in [7], [18] that the natural restriction map R: E - ET

is onto, (obviously) bounded and (not so obviously) boundedly invertible

with respect to the Induced L [O,), L2 [OT] topologies of E, ET,

respectively Thus, with pk (t) = e k 2  ,

M- k 2 W "

0 L Cr~cL[oi

r 0,) OL [,T]

fT e'k 2W 2t Tr(t) dt

0

where
r (Rl)* CL2L[0,T]

It follows that pr is an element of L[ 0, T] such that the numbers

(-l)k kWkfT 2 qr(t) dt , k = 1,2,3,...
0

are not square summable . From earlier developments, the input element b

with coefficients (3.12) corresponding to the boundary condition (3. 10),

with 1=0, x =1:

x(lt) = u(t) ,

is not an admissible input element .
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4. A Proof of Theorem 2.4. It is clear that the Carleson measure theorem

in H. Theorem 2.4, is central to our work in this paper . This result,

in one form or another has been known for somewhat more than a decade. A

proof for H 2 (D), where D is the unit disc in the complex plane,
1

appears in Duren ( 5]. A proof for functions in H is given, by

Koosis in his recent book ( 12]. The reader is also referred to the recent

book [ 8] by I. Gamett. Because the result is not particularly well known

outside the circle of mathematicians working in H P theory and because the

results are rather scattered and not readily available in precisely the form we

require, we offer here a proof of Theorem 2.4 which is a direct adaptation

to the half plane of the result for the unit disc appearing in Duren' s book

The proof given here originally formed part of the first author' s doctoral

dissertation [9]. As in Duren's work, the proof makes use of a relatively

simple case of the Marcinkiewicz interpolation theorem ([ 23 ], Chapter XI)

and, again following Duren, we do not quote the general Marcinkiewicz

theorem but, rather, give a direct proof for the simple special case required

here.

We begin with a covering lemma of "Vitall type".

Lamm !LL Let (IxI k e A} - J bea family of intervals in RI .

Suppose there is a positive number K such that for any finite collection

(' I )l' I "'" I~hn J of disjoint intervals in J

EI I < K. (4.1)

k=l k
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-tp

Then we can choose a sequence {IX j k = 1, 2,3,•. } of disjoint intervals

from j with the property: for every X c A there exists

k {1,2,3,...) such that

IXC 'k

where Tk is the interval having the same center as I but five times

helength of I
k

Proof. From (4. 1) it follows, in particular, that the length, j I X X' of

I is uniformly bounded (take n = 1, X1 = X). Define the sequence

I)} inductively as follows . Let IX be such that
k 1

JIL 1 2 sup
I ZxEA

For k = 2,3,4,... let Ix  be disjoint from Ix , i= 1,2,--,n-1,
• k i

and such that

j I - a sup{ Iij . c A, Ik n = i = 1,2,.-,k-l}. (4.2)

Since the I are disjoint it follows from (4.1) that
"xk

lim 11x I=0 . (4.3)
k-. k

Let Ik e J. Then there exists k such that

Otherwise (4. 2) and (4. 3) could not both be true. Let k 0  be the

smallest integer such that (4. 4) is true . Then

I. %a a= *~ ~.'..
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los of g- a

and, together with the fact that I k fl Ikk $, this implies that

I k C Tk'" completing the proof.

Whe subdivide the zest of the proof of Theorem 2.4 into several propositions

! for clarity. The proof is given for the half plane Re (z) 0, without
!!12 H2

loss of generality, and we designate H0  simply by H

Proposition 4.2. Let e H 2  and let 00(i. ) be the corresponding

boundary function in L2 (-asui) . For Z = CFT, a > 0 , let

I be the interval

I = [I- 0, T+ a] (4.5)
z

and let

(z) sup J---I f I$ 0 (t)ldt (4.6)

- where j z is the set of all finite intervals containing Iz  Then

ii (Z) 10 lO (z) .(4. 7)

iC Proof. From the Poisson integral formula in the half plane we have

,
-a i)dt

(z) = a I 0 0 i.dt +2 2No0 j tN 2 N+l a2+( -t)

+1 f0 (it)l dt 1

t C2 +( -t)

wlok
%* ', .'. *- -' .* ,, ' .'_' *' .' ..' ", . *. ' . ". *'. ". -. '. ,..' ." ". : . 'sI''. '..''.L . -- ". %, ". """ .~' -' * ,. -.,,, -" -
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I f00it 'ld + $0o(it) dt j-< f l 4 N cf fC
=0 1 t T" I S 2N+1 a C a I t--rI a

zt~r- ; (Z) + 2z

= .. ,gz).

Proposition 4.3. Let e LI(-m, *i) and for z = a +i-r,

a > 0, let Iz be _iven b (4.5) while (cf. (4. 6))

sup j[ SUI- t(t)Idt. (4.8)
ICJz

Let I be a Carleson measure and; for s a- 0 let Es  be the Borel

measurable subset of {z I Re (z) > 0} given

E= {z I Re (z) > 0 '(z) > s}.

Then, with A as in Definition 2. 3,

I ({Es) <S 1 L =1 1 (4.9)S1 2S L I~m .

Prof. Let J be the family of all finite intervals in R' such that

' "f 1(t) I dt > s. (4.10)

If 1 1I2, ... ,I n C J are disjoint, then (4.10) gives, for every n,
n n. I, I <- Lk z k I tP(t) Idt < S 11ILl(_. (4.11)

k= I k = l (.m

Thus J satisfies the hypotheses of Lemma 4. 1 and we can find a disjoint

sequence {1n I n =, 2, 3,... }c such that, Jn having the same

_' ' '0 ,- .-., ... - - - -
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center as i n  but five times the length, each I E . is contained in
some Jn"

If zc ES , then Iz CI for some IE J and we have, for

some n ,

I =(-a, + a] c n

Then clearly,

z C S ={+Id0o< a st- n}

This being true for all z c ES

CO

E C U Sn=l n

Since 1A Is a Carleson measure and (4. 11) holds,

RE s) E mS)A I ini
n=l n=l

n=l ,=

n nt

Proiosition 4.4. Let $ c H2  with boundary function 00(i E L2 (-o, cc)Let $ ( z) be defined by (4.6). Then if j is a Carleson measure on

5,.

(zI IRe(z) > 0,

L 2dIL((z))d z) :: lOAf 0 (it dt (4.12)
(z) >0 -.

Proof. For each r > 0 let

a.



4"5

0 (it) if 1o0(it)l > r
~r (t) = k0 otherwise .

L2
From 0 (1-) E L(-, n), we conclude that the support of '~r is a

subset Er of (-e, e) of finite (Lebesgue) measure . Then

tre L2 (E) CLI (Er) and we conclude, since d/r vanishes outside

Zr" that rE Lr(-e e1" Moreover

fi~rIi(.e n dr f f 100 (it)Idtdr
'p. 4

*a I 0 (it)I 2Odt

=f f dr0 (It)Ljdt= f 1(it)l dt (4.13)

=II$0,i. )il12a ,)LC 0 ccen

Let a(s) = L(E) . Then we can see that

L (F(z)) dP (z) -f s 2 d(s) = f s c(s)ds . (4.14)

From the definition (4. 8) of it is clear that for any two such

functions, 1 , tP , we have

(p + t )(z) -: ;-(z) + (z)

Hence

F(z)= ( r + (Io(i"  my))(Z)

" r(Z) + (t )(z) (4.15)

P r(z) + r

_ , -,: , '5 " , . e4", . .. , , " ... . ,. . - . . •. . . . - , ' -, - - - - . . . •, ,- - -
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.

since l0(it) - @r(t)l is either equal to 0 oris

F= (zI r(z> s} .

Suppose z E EZr. Then (z) - 2r and (4.15) gi

tpr! __ z(z) - r > r

and we conclude z E Fro Thus

E C Fr

Hence, from (4.9) of Proposition 4. 3,

()_ (F) SA II rUL(

so that

f ro (r )dr= f r IL(Ed dr

5<A 11f t~I l dr :S (using (4.13)0 -cop-cc)S.il o0i l~z_,.

~5AfI0( 1

Then (4.14) gives the inequality (4.12)

The proof of Theorem 2.4 is completed by combining

Proposition 4.2 with (4.12) above to give

, ( 12 d'Lz) -S - (F(z (iz)eLz>O r e(z)>O0

"'"~100 "'f € t 11 dt

2.f 00
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as claimed In (2. Z6), except for the trivial detail of replacing ( t )

by Ca= ¢a+i-).

.'

.4.

.. ,. .. . . . . . . . . , . . . ,. .. . :, . _ . .., .,, _

*5..4. . .• , - .' ' ':. . . ." - " " . . .. ,,,,, , , , , ,,' -,
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